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Local and global limitations to forest productivity as
mediators of biogeochemical response to forest
edge effects
Andrew B. Reinmanna,b,c,1 and Lucy R. Hutyrac

Despite the heavily fragmented nature of the world’s
forests (1), the response of forest carbon (C) and nitro-
gen (N) dynamics to edge effects is understudied.
Contrasting our findings that edge effects did not alter
soil C and N storage of temperate forests within resi-
dential landscapes in New England (2), Remy et al. (3)
point to their work showing that belowground C andN
storage increases near temperate forest edges in an
agricultural region of Belgium (4). Similar to other find-
ings from the temperate region (5), Remy et al. (4)
found increased N deposition at the forest edge and
implicate shifts in N cycling resulting from increased
deposition and changes in microclimate as the driver
of increased above- and belowground C and N near
forest edges. We suspect that differences in the soil N
responses between our studies are driven by site char-
acteristics and background N deposition rates for
these two regions. Although both studies were con-
ducted in temperate forest fragments, Remy et al. (4)
collected data from plots with edges facing the pre-
vailing winds in a region with high rates of throughfall
N deposition in deciduous forests (18.5–30.2 kg of N
per hectare), while our study (2) spanned a range in
edge aspects in a region experiencing comparatively
lower rates of throughfall N deposition (5.7–12.3 kg of
N per hectare) (6). These differences in the response of
belowground C and N storage to forest edge effects
highlight the spatially heterogeneous nature of the
complex interactions between forest edges, land
cover adjacencies (e.g., urban development, agricul-
ture), and different facets of global change that cause
shifts in forest edge microenvironments.

Characterizing the role of forest fragmentation in
regional and global biogeochemical cycles necessi-
tates advancing our understanding of how shifts in
microenvironment at the forest edge interact with

local prevailing drivers of global change and limita-
tions to microbial activity and forest growth. For
example, while forest fragmentation might alter pat-
terns of N deposition and availability, the ensuing
cascade of effects on ecosystem processes will de-
pend on local rates of N deposition and the response
of different tree species and forest types to increased
N availability. Across forest biomes, increases in soil N
availability tend to reducemicrobial biomass and rates
of soil respiration (7); however, the effects on forest
growth are less consistent. Although N is generally
thought to limit forest growth in the temperate and
boreal regions (8), forest growth has been shown to
be stimulated, reduced, or unaffected (9, 10) by in-
creased N deposition. Further, tropical forests are ex-
periencing some of the most rapid fragmentation, with
phosphorus generally thought to limit forest growth in
the tropics (11); it is unclear how the phosphorus cycle
responds to the fragmented edge environment.
Changing deposition and cycling patterns of atmo-
spherically derived nutrients at the forest edges
could also alter stoichiometric relationships among
nutrients. Our understanding of the impacts of forest
edges on C storage and biogeochemical cycles is in
its nascency, but the large shifts in microenvironment
and landscape structure associated with forest frag-
mentation are likely having profound global impacts
on forest productivity and biogeochemical cycles.
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