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REPLY TO REMY ET AL.:

Local and global limitations to forest productivity as
mediators of biogeochemical response to forest

edge effects

a,b,c,1

Andrew B. Reinmann and Lucy R. Hutyra®

Despite the heavily fragmented nature of the world's
forests (1), the response of forest carbon (C) and nitro-
gen (N) dynamics to edge effects is understudied.
Contrasting our findings that edge effects did not alter
soil C and N storage of temperate forests within resi-
dential landscapes in New England (2), Remy et al. (3)
point to their work showing that belowground Cand N
storage increases near temperate forest edges in an
agricultural region of Belgium (4). Similar to other find-
ings from the temperate region (5), Remy et al. (4)
found increased N deposition at the forest edge and
implicate shifts in N cycling resulting from increased
deposition and changes in microclimate as the driver
of increased above- and belowground C and N near
forest edges. We suspect that differences in the soil N
responses between our studies are driven by site char-
acteristics and background N deposition rates for
these two regions. Although both studies were con-
ducted in temperate forest fragments, Remy et al. (4)
collected data from plots with edges facing the pre-
vailing winds in a region with high rates of throughfall
N deposition in deciduous forests (18.5-30.2 kg of N
per hectare), while our study (2) spanned a range in
edge aspects in a region experiencing comparatively
lower rates of throughfall N deposition (5.7-12.3 kg of
N per hectare) (6). These differences in the response of
belowground C and N storage to forest edge effects
highlight the spatially heterogeneous nature of the
complex interactions between forest edges, land
cover adjacencies (e.g., urban development, agricul-
ture), and different facets of global change that cause
shifts in forest edge microenvironments.
Characterizing the role of forest fragmentation in
regional and global biogeochemical cycles necessi-
tates advancing our understanding of how shifts in
microenvironment at the forest edge interact with

local prevailing drivers of global change and limita-
tions to microbial activity and forest growth. For
example, while forest fragmentation might alter pat-
terns of N deposition and availability, the ensuing
cascade of effects on ecosystem processes will de-
pend on local rates of N deposition and the response
of different tree species and forest types to increased
N availability. Across forest biomes, increases in soil N
availability tend to reduce microbial biomass and rates
of soil respiration (7); however, the effects on forest
growth are less consistent. Although N is generally
thought to limit forest growth in the temperate and
boreal regions (8), forest growth has been shown to
be stimulated, reduced, or unaffected (9, 10) by in-
creased N deposition. Further, tropical forests are ex-
periencing some of the most rapid fragmentation, with
phosphorus generally thought to limit forest growth in
the tropics (11); it is unclear how the phosphorus cycle
responds to the fragmented edge environment.
Changing deposition and cycling patterns of atmo-
spherically derived nutrients at the forest edges
could also alter stoichiometric relationships among
nutrients. Our understanding of the impacts of forest
edges on C storage and biogeochemical cycles is in
its nascency, but the large shifts in microenvironment
and landscape structure associated with forest frag-
mentation are likely having profound global impacts
on forest productivity and biogeochemical cycles.
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